Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy.
نویسندگان
چکیده
The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Qy band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysis of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240-270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet-singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state.
منابع مشابه
Pathways of energy transfer in LHCII revealed by room-temperature 2D electronic spectroscopy.
We present here the first room-temperature 2D electronic spectroscopy study of energy transfer in the plant light-harvesting complex II, LHCII. Two-dimensional electronic spectroscopy has been used to study energy transfer dynamics in LHCII trimers from the chlorophyll b Qy band to the chlorophyll a Qy band. Observing cross-peak regions corresponding to couplings between different excitonic sta...
متن کاملTwo-dimensional electronic spectroscopy of molecular aggregates.
The properties of molecular aggregates, coupled clusters of small molecules, are often challenging to unravel because of their inherent complexity and disordered environments. Their structure-function relationships are often far from obvious. However, their ability to efficiently channel excitation energy over remarkable distances, as is the case in photosynthetic light harvesting, is a compell...
متن کاملTwo-dimensional electronic spectroscopy of the B800-B820 light-harvesting complex.
Emerging nonlinear optical spectroscopies enable deeper insight into the intricate world of interactions and dynamics of complex molecular systems. 2D electronic spectroscopy appears to be especially well suited for studying multichromophoric complexes such as light-harvesting complexes of photosynthetic organisms as it allows direct observation of couplings between the pigments and charts dyna...
متن کاملSinglet-singlet annihilation kinetics in aggregates and trimers of LHCII.
Singlet-singlet annihilation experiments have been performed on trimeric and aggregated light-harvesting complex II (LHCII) using picosecond spectroscopy to study spatial equilibration times in LHCII preparations, complementing the large amount of data on spectral equilibration available in literature. The annihilation kinetics for trimers can well be described by a statistical approach, and an...
متن کاملMapping Parallel Pathways of Energy Flow in LHCII with Broadband 2D Electronic Spectroscopy
Two-dimensional femtosecond broadband electronic spectroscopy was used to simultaneously probe parallel pathways of energy transfer in the major light harvesting complex of Photosystem II from plants. Sub-100 femtosecond relaxation between delocalized excitonic states on highly coupled clusters of chlorophylls and several hundred femtosecond to picosecond components of relaxation between cluste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 142 21 شماره
صفحات -
تاریخ انتشار 2015